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Mountain pine beetle outbreaks are responsible for widespread tree mortality in pine forests 
throughout western North America. Intensive outbreaks result in significant economic loss 
to the timber industry and massive changes to the forest habitat. Because of the time and 
space scales involved in a beetle outbreak, mathematical models are needed to study the 
evolution of an outbreak. In this paper we present a partial differential equation model of 
the flight phase of the mountain pine beetle which includes chemotactic responses and tree 
defense. We present a numerical method for integrating this model and use this method 
to investigate the relationship between emergence rate, forest demographics and patterns 
of beetle attack. In particular we look at how emergence rate affects the beetles'  ability 
to successfully attack strong trees, which may be an indicator of an epidemic outbreak. 
�9 1997 Society for Mathematical Biology 

1. Introduction. The interaction between mountain pine beetles (MPB, 
Dendroctonusponderosae Hopkins) and pine tree hosts (in particular, lodge- 
pole, Pinus contorta, and ponderosa, Pinus ponderosae) is the backdrop for 
some of the best current questions in mathematical biology, disturbance 
ecology and biological management. MPB has long been considered a 
major pest in western forests. As an aggressive bark beetle (one that kills its 
host), eruptions of this species are impressive events. Outbreaks can be 
both intensive (up to 80% or greater mortality) and extensive (covering 
thousands of contiguous acres), resulting in serious economic conse- 
quences. It is also becoming recognized that disturbances, such as MPB 
outbreaks, may be central to maintaining the structure, function and health 
of western forests. At endemic levels, MPB maintain a presence in pine 
forests over many years, infesting weak trees as wolves select aged and 
diseased caribou. When population densities become high enough, infesta- 
tions reach epidemic levels capable of killing many acres of vigorous, 
healthy trees. The transition between these states, mechanism of selection, 
role of environmental and dynamic determinism in MPB dispersal and 
ecological interaction between MPB dispersal, fire and management is only 
vaguely understood. 

609 
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The ecosystem itself presents many challenges to traditional observa- 
tional or experimental understanding. The landscapes are physically chal- 
lenging, with scales large enough to disallow casual observation. Multiple 
time scales complicate understanding; dispersal occurs for only a few weeks 
out of each year, yet individual events of infestation wax and wane over one 
or two days. Consequently, thorough understanding of spatial events re- 
quires detailed observation at many sites over several weeks, and yet spatial 
patterns may only evolve after several years. The physical scale of the hosts 
prohibits laboratory experimentation, while the status of western pine 
forest as timber and recreational resources complicates on-site experimen- 
tation. Mathematical modeling and simulation techniques therefore provide 
an important alternative mechanism for understanding. 

The landscape in mathematical biology is not without its challenges, 
however. The most natural mathematical language to describe spatio-tem- 
poral population dispersal involves partial differential equations (PDE). 
The complicated interaction between MPB, host and chemical landscape 
requires non-linear descriptions, at which point one leaves the safe haven 
of known equations and solutions and enters unknown territory. This paper 
is centered around analyzing the mathematical description of MPB disper- 
sal using computational and analytic approaches. 

The state of the modeling and our approaches to the mathematical 
challenges will be described in the next few sections. The picture which 
emerges from these investigations is striking: the biological switch between 
endemic and epidemic levels of infestation represents a transition from 
environmental to dynamic determinism in the mathematical model. In the 
environmentally dominated regime, populations are only large enough to 
establish themselves in "weak" hosts. The spatial pattern of attack and 
MPB dispersal is determined primarily by the effects of environment on 
host. As populations grow large enough, the locus of primary attacks 
continues to be determined by the environment. However, primary attacks 
serve to focus surplus population, which can reach high enough densities to 
successfully infest "strong," secondary hosts. This is manifested as a loss in 
spatial correlation between host vigor and successful attacks, which will be 
discussed below. 

2. The MPB Dispersal Model 

2.1. Behavior of the pine beetle/host tree system. Because of its economic 
impact, MPB population dynamics has been the subject of sustained re- 
search efforts dating from the early 1900s, focussed primarily on protection 
of valuable forest resources. Although this insect spends most of its life 
cycle under the bark feeding on phloem tissue, the relatively short phase of 
the life cycle in which emergence and attack of new hosts occurs is essential 
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for continuing the population. It is during this time that complex spatial 
dynamics come into play. 

The MPB is typically a univoltine species which attacks living pines. 
Unlike most phytophagous insects, successful reproduction is contingent 
upon death of all or part of the host (Sheppard, 1966, Wood, 1972). Host 
trees, however, have evolved effective response mechanisms to defend 
themselves against bark beetle attacks (Smith, 1963, 1966; Reid et al., 1967; 
Nebeker et al., 1993; Raffa et al., 1993). Almost all trees are capable of 
responding to bark beetle attacks, but only those with a rapid and sustained 
reaction are likely to survive. If many beetles attack the same tree over a 
short period of time (e.g., mass attack), they can exhaust the tree's defen- 
sive mechanisms. The final outcome of a bark beetle dispersal and coloniza- 
tion attempt is, therefore, dependent upon a series of competing rate 
reactions which regulate both beetle arrival and host response (Raffa and 
Berryman, 1979; Safranyik et al., 1989). 

The evolved relationship between the MPB and its host trees has 
resulted in an elaborate chemical communication system. Through a chemi- 
cally mediated synergistic reaction with host chemical compounds, female 
beetles attacking a tree release trans-verbenol, which, when mixed with 
o~-pinene, is an aggregation pheromone attracting both sexes (Pitman, 1971; 
Pitman et al., 1968; Hughes, 1973). At higher concentrations of trans- 
verbenol, higher proportions of males are attracted (Renwick and Vite, 
1970). Attacking males produce exo-brevicomin, which at low concentra- 
tions primarily attracts females (Conn et al., 1983). This system of chemical 
communication results in mass attack on a single focus tree. However, the 
tree is a finite food resource that can be overexploited by too many beetles. 
Verbenone, an epidietic 1 pheromone, is released by attacking males and 
inhibits the landing of additional beetles at high concentrations (Borden 
et al., 1987). Once the concentration of verbenone sufficiently exceeds the 
concentration of aggregating pheromones, flying beetles in the area swi tch 
to nearby host trees (McCambridge, 1967; Geizler and Gara, 1978; Geizler 
et al., 1980). When the incoming beetles switch, the new tree often has 
greater attack rates and is colonized more rapidly than the original focus 
tree (Rasmussen, 1974). The switching mechanism provides a means for 
efficiently utilizing the available population of attacking beetles. 

Although density-dependent beetle-produced pheromone responses play 
the dominant role in organizing MPB attacks, kairomones produced by the 
tree may also play a part (Hunt et al., 1989). At low population densities, 
attacking MPB selectively attack trees weakened by disease or other 
stresses (Tkacz and Schmitz, 1986; Schmitz, 1988; Schowalter and Filep, 
1993). It is hypothesized that stressed trees release a kairomone signal 

1The term epidietic describes specific sorts of animal behavior which are used principally for 
population density regulation (Prokopy, 1980). 
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which attracts MPB flying in the vicinity, providing primary attraction to a 
particular tree (Gara et al., 1984; Moeck and Simmons, 1991, Roe and 
Amman, 1970). An alternative hypothesis is that new hosts are found using 
a combination of random landings guided by visual cues (Schonherr, 1976; 
Sheppard, 1966), followed by chemical and tactile cues once on the host 
tree (Hynum and Berryman, 1980; Raffa and Berryman, 1979). Most likely, 
both situations occur. Although the combination of factors that signals a 
weakened tree remains an open question, enough evidence exists for the 
effect of host compounds on beetle behavior (Norris and Baker, 1967; 
Raffa and Berryman, 1982; Raffa, 1988) that models of MPB spatial 
dynamics should include some representation of host volatiles, as well as 
beetle-produced pheromones. 

The complex chemical cues in the MPB/pine  tree interaction act as 
self-focussing and self-dissipating forces. The interaction of these forces 
results in a non-linear density-dependent response and creates complex 
spatial patterns of resource utilization. Although the explicit spatial feed- 
back is critical to the ecological association of MPB with its hosts, there is 
no spatially explicit model of the interaction before our work (Powell et al., 
1995; Powell and Rose, 1996; White and Powell, 1996). In the next section 
we will review the construction of a spatio-temporal PDE model of the 
MPB/host  spatial ecology. 

2.2. The global model. We define the following variables, which depend 
on spatial location, x, y and time, t: 

P(x,  y, t) population of flying MPB 
Q(x, y, t) population of (alive) nesting/eating MPB 
A(x,  y, t) concentration of pheromones 
C(x, y, t) concentration of volatiles released by attacked trees 
S(x, y, t) resin outflow 
R(x,  y, t) resin capacity (related to phloem thickness and size of tree) 
H(x,  y, t) number of entrance holes bored by attacking MPB 

If we neglect spatial redistribution, the number of flying MPB decreases 
proportionally to the death rate, wlP , and the number of beetles landing 
and nesting in a tree, rl(R/Ro)P(1 + ~rA). The term riP captures ran- 
domly landing MPB; the term r 1 o'AP describes the nesting in response to 
attractant aerosols. R 0 is the rest resin capacity of the tree, which is 
proportional to the surface area of the bole. Consequently, the fraction 
R / R  o measures the uninfested portion of the bole. This gives a dynamic 
equation for changes in flying MPB density: 

R 
P =  - o J i P -  rl-~oP(1 + o'A) + y. 

The term y is the emergence rate of flying MPB. 
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The nesting population, Q, grows proportionally to riP(1 + o-A). Nesting 
MPB die at some rate, oJ2Q. Finally, beetles may be killed by the natural 
defense mechanisms of the host-resin outflow. The population of nesting 
MPB should decrease in proportion to the resin outflow through occupied 
burrows, ~ I S ( Q / H ) .  This gives an equation for Q, 

R O 
Q_. = - oo2Q + rl- ooP(1 + c r A )  -  iS-ff . (1) 

The rate of increase in the number of holes drilled is precisely equal to 
the number of MPB who have attempted to nest. On the other hand, resin 
crystallizes after flowing through burrows, slowly closing the hole. This 
means that holes should be lost at a rate proportional to the amount of 
resin outflow, S, which itself is proportional to the number of holes and the 
available resin capacity, 

S = r 3 H R .  

A rate equation for H is then given by 

R 
/-t = r 1 ~--S0 P(1 + o-A) - rar3HR. (2) 

It remains to be determined how the local resin capacity and the amount 
of resin outflow vary with time. Let R 0 be the reservoir capacity the tree 
would maintain naturally. When R ~ 0 the tree has no capacity to replen- 
ish its reservoir, so that the rate of change of the resin capacity should be 
proportional to R ( R  o - R) .  Resin capacity is depleted proportionally to the 
number of entrance holes and the available amount of resin which can flow 
out through the holes. These two processes give 

/~ = [r2(R 0 - R )  - r 3 H ] R .  (3) 

This set of equations reflects the temporal behavior without spatial 
redistribution. We resolve spatial redistribution by considering the effect of 
various "fluxes" on the population density. Denote the flux vector by (I). 
There are three basic components to the flux function, reflecting the 
beetles' recognition of potential hosts, their response to pheromones and 
the degree of randomness in their behavior. Thus, 

where: 

�9 4~c is flux along gradients of C ( x ,  y, t)  due to chemotactic recognition 
of potential hosts, 

d~ c = KP VC. 
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�9 d~ A is flux due to the beetles' attraction to/repulsion from the suite of 
pheromones, A. The summed response of these pheromones is attrac- 
tive in small concentrations, repulsive in larger concentrations, giving 

A o - A  
+A = vP 

Ao + A / A 3  
VA = vP Vf(A),  

where 

A 
f (  A)  =A3(Ao(  A3 + I) ln[I + A----~o - A ) .  

This flux function has the effect of attracting MPB for small A, but 
with saturable repulsive effect (parametrized by A 3) for A > A  o. 

�9 (Dp is flux due to the beetles' random redistribution in the absence of 
other influences, dependent only on spatial changes in the density of 
flying beetles, which gives 

+p = - /xVP.  

Adding the effects of these fluxes gives a spatio-temporal evolution 
equation for P, 

0 
- - P =  - V . { [ K  VC + v Vf( A)  ]P - /~ VP} 
Ot 

R 
- o J i P - r l w - P ( 1  + o'A) + y. (4) 

1% 

We will assume that the chemical concentrations, A and C, obey stan- 
dard diffusion laws, but with sources and sinks of their own. For the suite of 
pheromones released by nesting beetles, sources are proportional to Q, 
while losses occur due to chemical decomposition. These effects give a 
linear diffusion equation for A, 

- - A  = = b 1VzA + alQ - 61A. (5) 
Ot 

For host kairomones, C, the source is resin outflow. Again, we expect some 
loss due to chemical decomposition, given an equation similar to that for A, 

- - C  = b2 ~2C + a2S - 62C. (6) 
Ot 
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Table 1. The list of parameters appearing in the global PDE model for MPB redistribution 

Parameter Description 

K 

V 

Ao 
A3 
a 1 

bl 

a2 
b2 
62 
Ro 
Or 

r 1 

r 2 

r3 
r4 
to  1 

0) 2 

/3 
y(t) 

A measure of the beetles' perception of and attraction to weakened pines 
Attractiveness of pheromones 
Diffusivity of flying beetle population due to randomness 
Critical concentration at which pheromone becomes repulsive 
Saturation parameter for pheromone 
Rate of pheromone creation by burrowing beetles 
Rate of pheromone diffusion 
Loss rate of pheromone 
Rate of kairomone creation by host tree 
Rate of kairomone diffusion 
Loss rate of kairomone 
Local peak resin capacity 
Rate of directed infestation 
Rate of sampling infestation 
Rate of resin replenishment 
Rate of resin outflow through burrows 
Rate of resin crystallization 
Death rate of airborne beetles 
Death rate of nesting beetles 
Rate at which trees' natural defenses kill nesting beetles 
Emergence rate of new populations of airborne beetles (not constant) 

Equations (1)-(6) are a complete  spatio-temporal description of the depen- 
dent variables controlling the behavior of M P B / p i n e  relationship. The 
number  of free p a r a m e t e r s - - a  measure  of the descriptive degrees f reedom 
- - i s  given in Table 1. 

3. Numerical  Method.  Equations (1)-(6) are coupled, non-linear reac- 
t ion-diffusion PDE. Other  than the fact that solutions exist for finite times 
and sensible initial conditions, mathematics  offers no theory regarding the 
solution of  such equations. The most natural way to solve these equations is 
to at tempt  a numerical  solution by discretizing space and solving the 
resulting ordinary differential equations (ODE).  To achieve sufficient reso- 
lution on a multi-kilometer landscape requires tens or hundreds  of thou- 
sands of  spatial nodes, with a system of  non-l inear equations to be solved at 
each node. As if this did not represent  enough complication, the equations 
are stiff because of  the variety of temporal  scales in the parameters  (see 
Table 2) which we est imated in Powell et al. (1995). Consequently, even 
approximate solution of the governing equations has been a challenge 
(White and Powell, 1996). We have chosen to use the variety of scales to 
our advantage, solving the fastest, equations (5) and (6), analytically. This 
allows us to use a straightforward explicit numerical  method  on the remain- 
ing four equations. 
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Table 2. Parametric values for numerical simulation and units a 

Parameter Value Units 

a 1 400 tmg hec -1 fh-1 MPB-1 
b 1 50 hec th- 1 
~1 200 fh- 1 
A o 2 tmg hec- 1 
tz 1. hec fh- 1 
to 1 0.1 fh -1 
~r 15 hec tmg- 1 
r I 0.15513 fh -1  
r 3 0.025 fh- 1 
R 0 Mean of 1 R 0 
A 3 0.2 - -  
a 2 400 tmg hec- 1 fh-1 
b 2 50 hec fh- 1 
62 200 fla- 1 
v 10 hec 3 tmg -2 fh  -1  
K 8 hec 2 tmg- 1 fh- 1 
w 2 0.001 fh- i 
/3 100 MPB R o ~ 

R-1 r  r 2 0.05 
r 4 0.1 R~ ~ - 1  
p 2 hec 1/2 
7(t) - -  MPB hec -1 fh- 1 

aUnits involving resin are measured relative to R 0. We have 
used fh as an abbreviation for flight hour, hec for hectare and 
tmg for tens of micrograms. 

W e  discret ize the  space d o m a i n  and  approx ima te  the  con t inuous  P D E s  

with a system of  o rd ina ry  different ial  equa t ions  ( O D E )  of  the  state vari- 

ables in t ime. Because  we are  in te res ted  in c o m p a r i n g  pa t t e rns  o f  success- 

ful a t tacks  w h e n  varying pa rame te r s ,  we m a y  a s sume  pe r iod ic  b o u n d a r y  

condi t ions  and  use spectral  m e t h o d s  for  calculat ing spatial  derivatives, as 

expla ined below. F o r  the  chemica l  equa t ions  we solve the  O D E s  analyti-  

cally in Fou r i e r  space. F o r  equa t ions  (1) - (4)  we use an A d a m s  variables  

step p r e d i c t o r - c o r r e c t o r  me thod .  

3.1. Spectral derivatives. Cons ide r  the  per iod ic  funct ion,  f (x) ,  with pe-  

r iod 2 L .  I f  f is suitably different iable ,  then  f can  be  wr i t ten  as a Fou r i e r  

series 

and  

^ [ ilzrx i(x = i, oxp --c ) 
l ~ - - c r  

il~" ^ ( il~rx ] 
f ' ( x ) =  ~]  - ~ - f t e x p  - - - L - J '  

/ ~  - - o o  
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^ 

where i -- v r-Z-- 1 and f1 are the Fourier coefficients of f. Here differentia- 
tion in the state space, x, corresponds to multiplication in Fourier space. 
This process can be extended to functions of two variables to get 

f ( x ,  y) = 
(i, x in<y) 

E E flmeXp ~ + , 
1= -~ m= -~ 

where f (x ,  y) = f ( x  + 2L x, y + 2Ly) a n d  J~m are the Fourier coefficients. 
In our numerical method we discretize the space domain into n x by ny 

grid points so that Ax = 2Lx/nx,  A y = 2Ly/ny,  xj = - L  x + j A x and Yk = 
- L y  + k Ay. In this setting we can approximate f(xj ,  Yk) by a finite series 

f (x i ,  Yk) =fjk = 
nx/2-1E ny/2- 1 E  flm eXp ( ilrrxi---~x + imrryk ) 

l= -nx/2 m= -ny/2 -~y 

of the n x by ny Fourier  modes, where we choose n x and ny to be powers of 
2 for convenience. Then the approximations to the space derivatives are 
found by calculating^the Fourier coefficients (transforming from state space 
to Fourier space), ftm, multiplying these coefficients by the corresponding 
constant, ilrr/L x or imrr/Ly which are the eigenvalues of the matrix 
approximations to the derivative operators O/Ox and 0/0y,  and then 
transforming back to state space via a summation. Transforming between 
state space and Fourier space can be accomplished using discrete fast 
Fourier transforms 2 with •((n x log nx)(ny log ny)) floating point multipli- 
cations if n ,  and ny are chosen to be powers of 2. 

3.2. Semi-analytic solution for the chemical equations. In our discretized 
space, the evolution of the chemicals is governed by the ordinary differen- 
tial equations 

d 
-dTAjk = bl( A A)ik + alQjk - 6lAjk (7) 

and 

d 
~-TCik = b2( AC)j~ + a2r3HikRjk - 82Cjk. (8) 

In Fourier space these equations become 

d ^ 

--dTalm = (blDlm - 81)~Zl/m + alQlm 

2We use the optimized FFr packages from the netlib@ornl.gov archive. 
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d ^ 

--dTClm = ( b2 Dlm - ~2 )Clm -[-a2r3HRlm , 

where Dlm is the appropriate multiple for the Fourier derivatives. Each of 
these equations in Fourier space has the form 

y '  = t~y + k, 

where a is a constant and k is a function of t and has solutions satisfying 

y(t + At) = e~aty(t) + e~Atjtt+ate-- "('-~ dt. 

If we assume that k is nearly constant on the interval [t,t + At], an 
assumption justified by the rapidity of chemical evolution, then 

y(t + At) = e~Aty(t) + 
e ' ~ A t -  1 

a 
k. ( 9 )  

Since Q, H and R evolve at a much slower rate than the chemicals, we 
can treat them as constants over short time intervals and solve the chemical 
equations exactly up to the number  of Fourier modes included. For 
equation (7) we calculate the Fourier coefficients of A and Q at time t, 
then advance the solution in Fourier space to time t + At using (9) and 
finally transform the solution back to state space using an inverse Fourier 
transform. A similar process is used to advance (8). 

3.3. Discretization of non-chemical equations. For convenience of nota- 
tion we reduce our model  to one space dimension, x, and note that the 
following can be extended to two dimensions in a straightforward manner.  
Since we are interested in the change of attack patterns, we may assume 
periodic spatial boundary conditions and use the Fourier differentiation 
methods discussed earlier in approximating the space derivatives. If 3- 
represents this approximation of the derivative operator, 

dA n/2-1 ^ilTr ( ~ )  
dx (xj)--- (9-A)j= ~ Al-~-ex  p 

l= - n / 2  
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then the discrete approximations for equations (1)-(4) are 

d Rj 
--d-~Q: = rlPi(l + o-Aj) R~ - w2Q: - fiQjR:, 

d Rj 
dtHg- = rlPj(1 + o'Aj)--~joj-r4H:Rj, 

d 
-~Rj= [r2(Roj-Rj)-r3Hj]Rj. 

d 
~--TPj= - -  ( ~ - ( : I : ) ) j  - -  r l P j ( 1  + o'Aj) Rj  

No: 
- w l P  j + f j( t ) ,  

a o - A j  ] 
ao + AJA3 

This results in a pseudo-spectral method for solving the PDE numerically. 

3.4. Numerical technique. For the above system of equations we chose 
to use a standard Adams-Bashfor th-Moulton fourth-order predictor- 
corrector algorithm with a variable step size. We chose this method for ease 
of programmability (Burden and Faires, 1985), stability properties in a 
ODE setting (Gear, 1991) and the flexibility of self-correcting step sizes. 
This last consideration was important because of the large differences in 
the magnitudes of the coefficients in the MPB model, which combined with 
the aggregating non-linearity, produces sporadic spatial stiffness. 

To summarize the method, consider the system of differential equations 

d 
- - v  = F(v, t) v(t 0) = v (~ 
dt 

where v(t) is a vector-valued function of t. If we denote v (i) = v(t 0 + ih), 
where h is the time step, then the Adams method can be written in the 
form 

h 
wp(i+ 1) : u ..it_ "~ -  [55F(v(i), t(i)) _ 59F(v(i- 1), t(i 1)) 

+ 37F(v(i- 2), t(i- 2)) _ 9F(v(i- 3), t(i- 3)) ], 

h 
Wc-(i+1) = g(i) A-~-~ [9F(I(/+ 1), t (/+1)) + 19F(v(i),t (i)) 

_5F(v(i  1), t(i-1)) + F(v(i-2), t(i 2))], 
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w h e r e  w (i+1) is a predictor for u and - (i+1) w c is a corrector for V (i+1) At - ,p 

each step an error estimate in the approximation is calculated using the 
predictor and corrector. A weighted difference of the form 

[w(i+ 1)(j) _ W(pi+ 1)(j)[ 
6 = max 

1 + Iw(~i+l)(j)[ 

is calculated. Then an estimate of the error (see Burden and Faires, 1985) 
is given by 

196 
error = - -  

270h " 

If this error is less than a user supplied tolerance then we set v (/+ 1) = Wc(i+ 1) 
and move on the next time step. If the error is found to be too large, then 
w(i+ 1) and W(c i+ 1) are recalculated using a smaller value of h. If the error is 
much less than the tolerance, then the step size is increased for the next 
time step. Each time the step size is changed it is necessary to calculate 
three "starter" values needed by the predictor and corrector. To calculate 
these starter values we used a standard fourth-order Runge-Kut t a  method 
(Press et al., 1992). 

These are several advantages to using an Adams variable step method. 
Given the values of F(v (j), t (j)) for j = i - 3, i - 2, i - 1, which can be saved 
from previous steps, only two evaluations of F are needed for this fourth- 
order method.  Using information about the solution at four previous time 
steps gives better stability than standard methods which do not need this 
information. The method chooses the appropriate time step instead of 
requiring the user to supply that information. Finally, the corrector step 
corresponds to doing one iteration of an implicit solution of the system, 
which tends to be more efficient for solving stiff problems than explicit 
methods. The disadvantages of using the Adams variable step size method 
include need for storage space for past information and the necessity of 
small time steps. An added burden is the computational overhead involved 
in detecting the need to change step size and the calculation of the starter 
values. 

4. Results. We have used the above numerical method to investigate the 
role of environmental determinism in the dynamic MPB model. The 
"parameter"  R 0 is the reservoir resin capacity of an individual tree and is a 
surrogate for tree vigor and health. Tree phloem is responsible for carrying 
the storing resin and is the target region for MPB infestation. Since the 
phloem lies just under  the bark, R 0 is a measure of bole surface area and 
phloem thickness. Within flight season the major source of environmental 
variation in the model  is spatial heterogeneity in R0, reflecting forest 
demographics. 
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We have run the model  using a randomly selected forest with R 0 varying 
uniformly from 0.5 to 1.5, and tested the response of the model  at various 
levels of emergence, y, from 5 to 20 MPB/(hectare-f l ight  hour). We 
performed the simulations with chemotaxis and without chemotaxis (v = 
K = 0) to compare attack patterns under  dynamic determinism and environ- 
mental determinism. By setting v and r to zero we model  MPB movement  
only caused by random dispersion, meaning that any patterns observed are 
the result of environmental heterogeneity. Non-chemotactice runs are used 
as a "baseline" to check pattern formation in our model  against patterns 
generated in the absence of chemical cues. 

Since the phloem is the food source for the MPB larvae, a healthy tree 
with large R 0 would represent a "tasty" target of attack from a reproduc- 
tive perspective. However, a healthy tree's defensive capabilities would 
require a greater focus of attack to achieve sufficient numbers of MPB to 
overwhelm the tree. At relatively low levels of emergence there are insuf- 
ficient numbers of beetles to successfully target healthy trees. In this case, 
only the weak trees can be infested and we should see attack pattern 
influenced largely by forest demographics or what we are calling environ- 
ment  determinism. At higher rates of emergence, the weak trees serve as 
focal points, but the MPB densities are great enough so that secondary 
attacks on nearby trees of arbitrary health are also successful. This then 
causes a cascade effect which draws in more flying MPB from the surround- 
ing area and creates more secondary attacks, resulting in areas of successful 
infestation regardless of forest demographics. 

This switchover from primary to secondary attacks can be seen in our 
PDE model  in Figures 1 and 2. In Fig. 1 we show the resulting forest health 
and beetle attack patterns after 40 flight hours at emergence levels of 
7.5 MPB/(hectare-f l ight  hour) in parts (a) and (b) and 10 MPB/(hec ta re -  
flight hour) in parts (c) and (d). Figure l(a) and (c) are without chemotaxis, 
while Fig. l(b) and (d) are with chemotaxis. In Fig. 2 the resulting attack 
patterns are shown for levels of emergence of 12.5 and 15 MPB/(hec ta re -  
flight hour). In the absence of chemically directed movement  the only 
pattern formation is in the form of survival of the fittest trees, where the 
MPB are only able to successfully attack the weak trees. When including 
chemotaxis there is a marked switching in attack patterns with more 
organization on the part of the flying MPB at higher rates of emergence. 

From Figs. 1 and 2 we can conclude that in the presence of chemotaxis 
either the bulk number  of beetles emerging or the rate of emergence is key 
to secondary attack success. To see that the rate of emergence is the cause 
of the pattern formation and not the bulk number  of beetles emerging, we 
ran simulations varying the time over which a fixed number  of beetles 
emerged. In Figs. 3 and 4 we see that the beetles achieve a better focus of 
attack at the higher emergence rate, Fig. 3(a), and that as the emergence 
rate decreases so does the beetles' ability to organize their attack. Thus, the 
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Figure 1. Forest health/beetle attack patterns both with chemotaxis (b and d) 
and without chemotaxis (a and c) after 40 flight hours at emergence levels of 7.5 
and 10 MPB/(hectare-flight hour). Dark grey denotes low resin (poor health); 
contour lines show varying densities of flying MPB. 
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(d) 
Figure 1. (Continued). 
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Figure 2. Forest health/beetle attack patterns both with chemotaxis (b and d) 
and without chemotaxis (a and c) after 40 flight hours at emergence levels of 
12.5 and 15 MPB/(hectare-flight hour). Dark grey denotes low resin (poor 
health); contour lines show varying densities of flying MPB. 
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Figure  2. (Continued). 
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Figure 3. Tree hea l th /MPB flight pattern on inhomogeneous forest with the 
same number of beetles emerging over 30, 40, 50 and 60 flight hours. Frame (a) 
shows the demographics of the forest when emergence occurs over a 30 flight 
hours period; light grey denotes high resin levels (good health); dark grey 
denotes lower resin level (poor health); contour lines represent different level of 
density of flying MPB. 
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Figure 3. (Continued). 
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Figure 4. Tree health/MPB flight pattern on inhomogeneous forest with the 
same number of beetles emerging over 70, 80, 90 and 100 flight hours. Frame 
(a) shows the demographics of the forest when emergence occurs over a 70 
flight hours period; light grey denotes high resin levels (good health); dark grey 
denotes lower resin level (poor health). There is no significant focusing of flying 
MPB at these emergence levels. 
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Figure 4. ~ Continued). 
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model indicates that synchronization of emergence plays an important role 
in the beetles ability to successfully engage in secondary attacks on trees of 
arbitrary health. 

4.1. Correlation between Q and R o. In order to investigate the relation- 
ship between the original forest demographics and the pattern of infesta- 
tion we look at the spatial correlation between Q and R 0 as a function of 
time. If u and v are n-vectors, then the means of the elements in u and v 
a r e  

n n 

= ~ u J n  and ~ =  ~]vy /n ,  
j = l  j = l  

and the correlation coefficient between u and v is then given by 

corrcoef(u, v) = 
[ ( u ;  - - v ) ]  

So the correlation between the two matrices, Q(t )  and R 0, is the number 
corrcoef(Q(t), R0), where we view the matrices as long vectors. The correla- 
tion coefficient is a value between - 1 and 1, with - 1 corresponding to an 
exact match in spatial pattern of low values of R 0 with high values of Q 
and with 1 being equivalent to Q = kR o + c for some positive constants, k 
and c. The correlation coefficient is zero if there is no correlation in the 
spatial pattern of the matrix elements of Q and R 0. When corrcoef(Q(t), R 0) 
is close to - 1 ,  the dispersal pattern is environmentally determined, mean- 
ing that the pattern of successful attack is almost completely determined by 
the pattern of weak trees in the forest. 

Figure 5 is a graph of the correlation between Q and R 0 for different 
rates of emergence. The solid line corresponds to an emergence rate of 
15 MPB/(hectare-flight hour) without chemotaxis. The other four lines in 
Fig. 5(a) correspond to emergence levels of 7.5, 10, 12.5 and 15 M P B /  
(hectare-flight hour) with chemotaxis. Figure 5(a) shows that at low levels of 
emergence, with chemotaxis, the infestation pattern has a strong negative 
correlation with the demographics of the forest and is almost identical to 
the correlation coefficient generated with environmental determinism. As 
the emergence rate increases there is a loss correlation, corrcoef(Q(t), R 0) 
tends towards zero, which indicates the presence of successful secondary 
attacks against groups of trees independent of R 0 value. 

Figure 5(b) shows one curve, with emergence of 7.5 MPB/(hectare-flight 
hour) and chemotaxis, indicated by the open circles and four curves at 
emergence levels of 7.5, 10, 12.5, and 15 MPB/(hectare-flight hour) with- 
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Figure 5. Correlation between peak health of  the trees, Ro, and infestation, Q. 
There are four levels of  emergence with chemically directed moment;  multipli- 
cation signs, 3' = 0.15; pluses, 3' = 0.125; asterisks, 3' = 0.1; open circles, 3' = 0.075. 
There are also four levels without chemical  directed movement:  solid line, 
3' = 0.15; dash-dot line, 3' = 0.125; dotted line, 3" = 0.1; dashed line, 3" = 0.075. 
Part (a) is a comparison primarily of  the correlation with chemotaxis,  while  (b) 
is primarily without chemotaxis. 
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out chemotaxis. In this case all five curves indicate a strong negative 
correlation between forest demographics and the corresponding patterns of 
attack. The only loss in negative correlation for the four lower curves can 
be attributed to the effects that A has on the conversion of flying MPB to 
nesting MPB. In this case of environmental determinism there is no 
successful switching from primary to secondary attacks as the emergence 
level is increased. 

4.2. Spectral comparison and change in scale. Another  way to show this 
marked difference in attack pattern between emergence levels with and 
without chemotaxis is to look at the spectrum of attack. Figure 6 shows the 
magnitudes of the bulk wave numbers for the spatial pat tems of attack with 
chemotaxis (open circles) and without chemotaxis (multiplication signs) 
after 40 flight hours, at emergence levels of 7.5, 12.5 and 15 M P B /  
(hectare-flight hour). These bulk wave numbers are an average of the 
magnitudes of waves of the same approximate wave length. If we write 

O j k  = 
nxJ21nJ21   ,meXp[  j 

l= - n x / 2  m =  - -ny /2  Lx ~ ' 

then the magnitude of the ith bulk wave number  is the average of the 
" 1 m 2 1 magnitudes of Qtm for all l and m satisfying i - ~- < vff $ + < i + 3- We 

then normalized each spectrum so that the largest mode has magnitude 1 to 
compare the resulting attack patterns with and without chemotaxis and with 
the demographics of the forest. In Fig. 6(a) we see the start of the 
characteristic bandwidth of attack with chemotaxis in the lower modes. 
However, the overall attack spectrum has the same shape both with and 
without chemically directed movement  at this low level of emergence. 
Again this corresponds to the presence of only primary attacks on weak 
trees. 

In Fig. 6(b) and (c) we see that at higher levels of emergence, the attack 
spectrum with chemotaxis is dominated by the lower modes while the 
non-chemotactic attacks maintain the same relative structure. In Fig. 6(c) 
we can compare the attack spectrum with the demographics of the forest. 
The plus signs represent the peak health spectrum of the trees. As ex- 
pected, there is a strong correlation between the health spectrum and the 
spectrum of attack without chemotaxis. 

In Fig. 6(d) we show the same results with a different randomly gener- 
ated forest. Both Fig. 6(c) and (d) correspond with an emergence rate 
7 = 0.125, and the spectrum of attack with chemotaxis is the same in both 
cases, indicating the same pattern of secondary attacks. However, the 
spectra of attack without chemotaxis are not the same, but are correlated 
with the original demographics of the forest as expected. 
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Figure 6. Normalized magnitudes of bulk wave numbers for infestation, Q, with 
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The pluses correspond to the spectrum of the forest, R 0. 
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We have shown in Fig. 6(c) and (d) that changing the demographics of 
the forest does not change the statistical relationship of the attack patterns. 
To further validate our results we must also show that the attack relation- 
ship remain the same under  a refinement of the numerical grid. In the 
above experiments we used a 64 x 64 numerical grid on a 1.6 • 1.6 km 
space domain. This gives a resolution of 25 m, so each grid point can 
represent several individual trees. Thus, as the resolution is increased, 
each grid point would be an average of characteristics of fewer trees. 
The obvious questions is then: "do we get the same results at higher 
resolutions?" 

To show that the attack patterns predicted by our model  are independent  
of the grid size, we need to increase the resolution, maintain some degree 
of heterogeneity, insure that the same forest demographics are represented 
at both grid sizes and then compare patterns of attack. The only difficulty in 
increasing resolution is choosing R 0. To generate R0s for a 64 x 64 and 
128 • 128 grid point runs, we start by choosing random values between 0.5 
and 1.5 for R 0 on a 32 x 32 grid, or a resolution of 50 m. We then refine R 0 
from the 32 • 32 to a 64 • 64 grid using a nearest neighbor averaging 
scheme on all new grid points. To get the 128 • 128 grid of R 0 values, we 
refine the 64 • 64 grid again using nearest neighbor averaging on the new 
grid points. This method  generates two resolutions of a forest where the 
heterogeneity is contained in the lowest 32 Fourier modes. This insures that 
there is no loss of high mode forcing when going from the 64 • 64 to the 
128 • 128 simulation, while maintaining basically the same spatial demo- 
graphics of the forest. 

The clearest way to graphically compare the attack patterns at the two 
resolutions is to look at the correlations between Q and R 0. In Fig. 7 we 
show the evolution of the corrcoef(Q, R 0) over time at both a 25 and a 
12.5 m resolution for simulations with chemotaxis at an emergence level of 
7 =  0.125. In both cases we see the same switching from primary to 
secondary attacks and that switching occurs at the same rate, with the same 
relative correlation values. We also observed the same pattern formations 
and spectra of attack in both simulations, but omit the corresponding 
pictures for brevity. 

Based on these results, we are confident that out model  demonstrates a 
statistically significant relationship between high rates of emergence and 
the MPB's ability to successfully participate in secondary attacks on trees of 
arbitrary health, a necessary component  in an epidemic outbreak. 

5. The Structure of Secondary Attack. In the previous sections we have 
shown that the model  embodied in equations (1)-(6) exhibits a phase 
transition as the rate of emergence of flying MPB increases. The phase 
transition is indicated by a marked shift in correlation with environmental 
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determining factors and change from broad and random to smooth spectral 
dispersal patterns. In this section we will demonstrate that the structure of 
dispersal after the phase transition is dominated by the success of sec- 
ondary attacks. Primary attacks occur as MPB successfully nest in weak (low 
R 0) trees. Due to the combination fo pheromone release and chemotaxis, 
the population of flying MPB responds with a motion of peak population 
levels away from the focus of the primary infestation. This is our model's 
rendition of the "switching" behavior reported by field observers. Secondary 
attacks occur when MPB have switched from the weak focus tree to 
potentially strong trees near the focus (Geizler et al., 1980; Gara et al., 
1984). If successful, the pattern of trees infested after secondary attacks 
should be strongly correlated with the structure of the flying population's 
switching response. In this section we will analyze the asymptotic response 
of the model to successful point infestations, and show that the tail of the 
MPB spectrum obeys a distinctive power law. The exponent of this power 
law increases with the number of MPB nesting after a successful attack, 
and compares favorably with the numerical evidence. By contrast, before 
phase transition the spectrum of attacks has a spectrum precisely as broad 
as the randomly selected forest. From this we conclude that the pattern 
produced by epidemic infestation is dominated by the success of secondary 
attacks. 
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To begin with, we observe the parametric separation of scales. The 
parameters describing chemical movement a j, bj, 6j are (at least) an order 
of magnitude greater than the parameters describing MPB dispersal /,, v, 
K. In turn the dispersal parameters are orders of magnitude larger than the 
remaining rate constants rj, r 3/3, wj. From these observations we may infer 
the following: 

1. The chemical concentrations will rapidly come into equilibrium with 
respect to their (slowly varying) source terms. 

2. The flying MPB response may be approximated as quasi-steady. That 
is, the chemical fields appearing in (4) will be constant on the time 
scales at which MPB respond, and the loss terms will be negligible 
when compared with the chemotactic responses. 

3. After a successful attack, a focus tree's resin reservoir will be totally 
depleted, giving R = 0. Consequently the effect of equations (1)-(3) 
will be negligible in determining the switching behavior during a 
secondary attack, and the effect of C may be neglected. 

These three observations will allow us to determine the population re- 
sponse at the time of switching. 

We will assume 

Q = q S ( x ) 6 ( y ) ,  

where q is the number of MPB nesting in the focus tree after a successful 
primary attack. It would then seem natural to solve the steady-state version 
of (5) with delta-function forcing. Unfortunately, the solution has a loga- 
rithmic singularity at the primary infestation, which would make succeeding 
analysis untenable. Instead, we will model the chemical response as a 
Gaussian, and choose the shape parameters to be consistent with (5). 

Define the moments M 0 and M 1 by 

Mjae=f fo~Ari+ l dr. 

Then, taking time derivatives and integrating by parts after substituting (5), 

d 
-d-;Mo = alq - 61M o. (10) 

and 

o0 

d b l f  ~ A dr - 8 1 M  1. (11) - ~ M  1 = 
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If  we require 

a (r; l  A = 2 - ~ e x p  - , 

then  the steady solutions to (10) and (11) satisfy 

a 1 a= q 

and 

b l  ~ b l  c ~  
a - -  = - - I  A d r = M l = a A - -  

~1 /~ ~1 ~o 2 

This latter equat ion  gives, in turn, 

A 2 = 2 bl " 
61 

Hence,  a Gaussian funct ion which has the same first and second m o m e n t  as 
the asymptotic p h e r o m o n e  response to a point  infestation is 

A a = alq exp (12) 
ba 2bl  ]" 

Now we turn  our  a t tent ion to the quasi-steady MPB response to a given, 
stationary chemical  signature. If we assume that  the rate terms appear ing 
in (4) are negligible at leading order,  then  the stationary response to 
chemical  gradients satisfies 

- V [  vP Vf(A,  C) - / zVP]  = 0. (13) 

Here  

f ( A ,  C) =A3[Ao(A 3 + l ) l n  - - + 1  - A  + - - C .  
A3A 0 u 

For  boundary  condit ions on (13), we require  that  P be finite at the origin 
and that  

Y 
lim P = - -  

r-~ o~ r 1 -t- 601 
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This latter condition comes from requiring that asymptotic behavior of 
solutions to (13) be consistent with the steady-state asymptotic behavior 
of solutions to (4). The solution is given by 

Pqs(r) _ 7 exp f ( A a ( r ) , C  = 0 . (14) 
F 1 --[- r 

In Fig. 8 we compare the spectrum of nesting MPB from 7 = 0.125 and 
0.15 simulations on a randomly initialized forest with the spectrum of the 
theoretical secondary response, Pqs. Our rationale for the comparison is to 
determine how much of the structure of the dynamically dominated attack 
can be attributed to the success of secondary, switching attacks. The 
functional form of Pqs was parametrized using q values from the average 
surviving nesting beetles in focus trees (trees with 0.5 < R  0 __< 0.6). The 
agreement of spectra on the log-linear plot of Fig. 8 indicates that the 
computer  simulations have power-law decay in their spectra, in spite of 
the broad-spectrum, random environment. This power-law decay agrees 
well with the power-law decay of the spectrum of MPB responding in 
secondary attacks. We may conclude that the small-scale structure of an 
epidemic is dominated by the success of secondary attacks. This is very 
much in agreement with published observations (Geizler et al., 1980; Gara 
et al., 1984). 
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6. Conclusions. In this paper we have presented a PDE model of the 
in-season dispersal of MPB, coupled with equations describing the interac- 
tion between the bark beetle and its host species. The model was con- 
structed mechanistically as opposed to phenomenologically. That is, individ- 
ual terms in all of the equations mathematically model components of MPB 
population behavior or aspects of pest /host  interaction. The model was not 
built to have any particular global behavior, but was constructed with the 
intent of examining the landscape-scale consequences of various mechanis- 
tic processes in MPB dispersal. In our interactions with entomologists and 
ecologists, we have tried to view the mathematical model as a means of 
hypothesis testing. The various terms in the model are all mathematical 
descriptions of components of MPB/hos t  dynamics which entomologists/ 
ecologists hold to be relevant; the various parameters allow us to adjust the 
relative strength of those components. In this context, every selection of 
parameters, initial conditions and model integration is a particular exam- 
ple of examining the large-scale consequences of hypotheses about MPB 
dispersal. 

With that in mind, we have had two goals in this paper. The first was to 
describe the mathematical model and our numerical approach to it, and the 
second was to examine the role of environmental determinism in outbreak 
initiation. To accomplish this latter goal we integrated the model with and 
without chemotaxis on a forest with randomly selected vigor (R0). When 
the chemotactic terms are neglected (u and K set to zero), the only source 
of spatial structure is the explicit spatial variation of tree vigor. With 
chemotaxis operating (~, and K non-zero), variations in R 0 still may affect 
the strhcture of the pattern. However, spatial patterns can also be gener- 
ated dynamically, through the mechanism of pheromone self-focusing. 
We are thus selecting between two hypotheses on catastrophic outbreak 
phenomena: epidemic outbreaks are generated by chance propinquity of 
"weak" trees or epidemic outbreaks are caused by sufficiently large emer- 
gence of MPB. 

The results presented in this paper indicate that the phase transition 
separating endemic from catastrophic epidemic behavior is mediated by 
increasing population levels. Our infestation pictures after phase transition 
are strongly reminiscent of the kill pattern in catastrophic MPB epidemics; 
the spotty infestation illustrated in the environmentally determined series 
of pictures is not observed in MPB outbreaks. It is clear that chance 
arrangement of weak trees serves to seed large-scale infestations, as is 
evidenced by the strong negative correlation initially between attacks and 
forest vigor. What characterizes spot eruption after the outbreak is the 
success of secondary attacks against trees of arbitrary vigor. Again, this is 
consistent with observations of incipient epidemics. 

As modelers and applied mathematicians, these results are particularly 
satisfying to us, because phase transition behaviors were not built explicitly 
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into the model. We focussed our efforts on building faithful reflections of 
the mechanical, reductionistic aspects of MPB dispersal and host interac- 
tions. Consequently, we can view the mathematical and numerical results 
presented in this paper as tests of hypotheses in the sense discussed above. 
What we have demonstrated here is that the  phase transition apparent in 
our model as population emergences increase is most strongly influenced by 
dynamic pattern formation and is less strongly influenced by environmental 
variability. 

The authors are grateful for the generous support of the USDA Forest 
Service Mountain Pine Beetle Project [grants numbers INT-94904-CCSA 
(PW) and INT-94904-CCSA (JP)] and the NSF Division of Mathemat- 
ical Sciences [grant number DMS-95-05327 (JP)]. We would also like to 
thank Jesse Logan and Barbara Bentz of the MPB Project and Rich Cutler 
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